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Instability of continuous waves and rotating solitons in waveguide arrays

S. Darmanyan,* I. Relke, and F. Lederer†

Institut für Festkörpertheorie und Theoretische Optik, Friedrich-Schiller Universita¨t Jena, Max-Wien Platz 1, D-07743 Jena, German
~Received 20 December 1996!

The effect of a nonvanishing transverse wave vector on the stability of continuous waves and temporal
solitons which propagate in an array of nonlinear optical waveguides is studied both analytically and numeri-
cally. We derive analytical expressions for the domain of existence as well as the gain of modulational
instability of moving continuous waves. Because the transverse wave vector controls the ‘‘discrete diffraction’’
the stability behavior critically depends on this quantity. By employing the perturbation theory near neutrally
stable modes it is shown that there are two different scenarios for the evolution of modulationally unstable
soliton arrays. The transverse wave vector of the unstable solution determines which kind of instability devel-
ops. Numerical calculations confirm the analytical results.@S1063-651X~97!01606-1#

PACS number~s!: 42.81.Qb, 03.65.Ge, 42.81.Dp
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I. INTRODUCTION

Nonlinear evolution equations arise in many branches
modern science. Stationary solutions to these equations
frequently be found by using both analytical and numeri
methods. One of the fundamental problems left is to ch
these solutions against their stability, which is essential fr
a basic point of view as well as for potential application
see, e.g.,@1–7#, and the references therein. In particular,
nonlinear optics this question has attracted a consider
amount of interest during the past several years. Differ
kinds of instability may lead to such phenomena as bista
ity, self-oscillation, and the formation of static or movin
patterns. A prominent example is modulational instabil
~MI !, which is the prerequisite for the formation of spatial
temporal patterns. In an optical fiber where the field evo
tion is described by the nonlinear Schro¨dinger equations
~NLSE! MI of a continuous wave~cw! can be employed for
the generation of pulse trains with a high repetition r
@8,9#. Moreover, it has been shown that recurrence phen
ena and the existence of localized excitations in discrete
tems can be attributed to MI of stationary solutions of t
respective nonlinear equations@10,11#. It turned out that a
particular feature of these systems consists in the critical
pendence of both the MI gain~instability increment! and the
domain of MI on the wave number of the stationary solutio

Recently it was pointed out that arrays of nonline
waveguides represent an ideal laboratory for the study of
dynamical behavior of discrete systems@12–24#. Besides
this basic point of view these arrays may be envisaged
potential all-optical devices such as, e.g., switches, or st
ing or logical elements. Moreover, if dispersion acts in t
waveguides, arrays own the properties of both discrete
continuous systems. Thus the study of their nonlinear beh
ior is of fundamental interest as well. In particular, the stu
of discrete solitary wave solutions which represent a bala
between coupling~or ‘‘discrete diffraction’’! and self-phase
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modulation in nonlinear optical waveguide arrays~NOWA!
has attracted a considerable amount of interest. The exist
of this type of localized solutions was predicted first for f
cusing Kerr nonlinearities@12#. As a consequence of the fac
that in NOWAs the ‘‘diffraction’’ can also be negative~de-
pending on the transverse wave vector! bright solitary waves
were also found in defocusing nonlinearities@13#. These soli-
tary waves describe either a strong~in a few waveguides! or
a weak localization~minor changes from guide to guide! of
the optical field in the array. The latter case leads to
continuous NLSE in the long-wavelength approximati
which exhibits genuine spatial soliton solutions. A detail
evaluation of various approaches toward an analytical
scription of NOWAs~including also the intermediate case
localization! can be found in@14#, where propagation, steer
ing, localization, and collision effects of the solitary wav
solutions are investigated. Power controlled switching
NOWAs was numerically observed in@15#. The possibility
to control the propagation direction and the output chan
by an initial phase tilt was shown in@16,17#. The influence of
the inhomogeneity of the coupling strength in a NOWA
solitary wave formation and switching was studied
@18,19#.

Recently the existence and stability of solitary wave so
tions localized both temporarily and across the array w
considered in@20–24#. In particular, MI of cw as well as
temporal soliton solutions in NOWAs was studied in@22#
where particular emphasis was paid to temporal compres
and spatial localization effects. However, the authors
stricted the study to the case where the transverse wave n
ber vanishes. This means that the cw solution does not m
across the array and the solitons have both the same s
and phase in all waveguides. In view of what was said abo
the transverse wave number of the stationary solutions m
represent an important control parameter with regard to b
the MI gain and domain. Therefore the aim of this paper is
study MI for plane waves moving across the array as wel
soliton solutions the phase of which rotates across
NOWA. We will term the latter solutions rotating soliton
Moreover, we will check our analytical results beyond t
onset of instability by numerical means in order to ident
temporal and spatial patterns, which are eventually form

k
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55 7663INSTABILITY OF CONTINUOUS WAVES AND . . .
The normalized slowly varying envelopes of the optic
field in a fiber or channel waveguide array may be descri
by the dimensionless linearly coupled nonlinear equati
@22# which can likewise be considered as mixed discre
continuous nonlinear Schro¨dinger equations~DCNLSE!

i ]zUn1
b

2
] ttUn1 f ~Un111Un21!1uUnu2Un50,

n51,2, . . . ,N ~1!

wherez is the propagation distance scaled by the dispers
lengthLd5T0

2/uDu(D is the group velocity dispersion!, and
t is the time in the reference frame of the pulse scaled by
pulse lengthT0. The linear coupling parameter is defined
f5pLd /2Lh.0 whereLh is the half beat length of a dua
core coupler.b51 or 21 stands for anomalous (D,0) or
normal (D.0) group velocity dispersion, respectively. Th
normalized amplitudeU is related to the slowly varying en
velope of the optical fieldA by U5AgLdA whereg is the
effective nonlinear coefficient@7#. We note that Eq.~1! holds
likewise in short arrays formed by film waveguides. The
t represents a transverse coordinate scaled by the beam
w0 andLd5pw0

2/l is then the diffraction length. In wha
follows we study the stability of two solutions to Eq.~1!,
viz., a moving plane wave and a rotating temporarily loc
ized solution.

II. MODULATIONAL INSTABILITY
OF MOVING PLANE WAVES

The moving cw solution to Eq.~1! may be written as

Un~z,t !5U0e
i ~kz1qn2vt !, ~2!

whereq is the arbitrary transverse wave vector andv the
deviation from the carrier frequency. The longitudinal wa
vector component reads as

k5uU0u212 fcosq2
b

2
v2.

We note that the linear version of this dispersion relat
indicates that the transverse coupling in the array may
interpreted as discrete ‘‘diffraction.’’ Thus this diffractio
resembles the continuous one~positive diffraction! only for
0<q,p/2. For q5p/2 the diffraction disappears and ge
negative forp/2,q<p. Based on this interpretation it ca
be anticipated that the transverse wave vector consider
affects the stability behavior of the stationary solutions.

We perform the familiar linear stability analysis@6,7# by
modulating the unperturbed amplitudeU0→U01Cn(z,t) in
Eq. ~2! where

Cn~ t,z!5Aei ~Kz1Qn2Vt !1B* e2 i ~K* z1Qn2Vt !. ~3!

Inserting Eq.~2! into Eq. ~1! we get a dispersion relation fo
the perturbations with the amplitudesA andB:

~K1bvV12 fsinQsinq!25F~F22U0
2!, ~4!

where
l
d
s
-

n

e

,
dth

-

n
e

ly

F~V,q,Q!5
b

2
V214 fcosqsin2

Q

2
. ~5!

It is evident that the stationary solution~2! is modulation-
ally unstable~exponential growth of the perturbation! if the
right-hand side of Eq.~4! is negative. Obviously, the gain o
instability

Im @K#[P5AF~2U0
22F !.0 ~6!

varies with the wave numberq of the stationary solution and
the frequencyV and wave numberQ of the perturbation, see
Eqs. ~4! and ~5!. In contrast, the real part ofK additionally
depends on the frequencyv.

The distinctive feature of discrete systems, viz., the
pendence of the gainP on the wave number of the stationa
solution@10,11#, can be clearly seen by inspecting Eq.~5!. It
follows from Eq.~6! that regardless of the sign of dispersio
(b561) MI occurs for

0,F,2U0
2 , ~7!

and the maximum gainPmax5U0
2, which appears for

F5U0
2, depends only on the amplitude of the stationary

lution.
Some familiar limiting cases can be read off from Eq

~4!–~7! as MI of ~i! the nonlinear Schro¨dinger equation@6,7#
for fcosq50 ~diffractionless case!, ~ii ! the discrete nonlinea
Schrödinger equation forb50 ~dispersionless case! @10#,
and ~iii ! the DCNLSE ~1! for q50 ~zero transverse wave
vector! @22#.

It is obvious that the existence criterion, the domain, a
the gain of MI are essentially determined byF(V,q,Q)
which, in turn, critically depends on the sign of bothb and
cosq, see Eq. ~5!. For b521 ~normal dispersion! and
p/2<q<p ~zero and ‘‘negative’’ discrete diffraction! there
is no MI. In what follows we study the three cases where
may appear in detail.

~1! b51 ~anomalous dispersion! and 0<q<p/2 ~zero or
positive ‘‘diffraction’’ !.

From Eq. ~7! we can immediately derive the frequenc
rangeV2,V,V1 ,

V6562AU0
222 fcosqsin2

Q

2
,

where MI appears. The respective domain of MI is shown
theV-Q plane for four different transverse wave vectorsq in
Fig. 1. As usual only the first Brillouin zone is displaye
Two conclusions can be drawn from Fig. 1, viz.,~i! if
2 fcosq<U0

2 ~weak diffraction! the whole Brillouin zone is
modulationally unstable and~ii ! if U0

2,2 fcosq ~strong dif-
fraction! the region of MI is situated between6Q0 with

Q052arcsinS U0

A2 fcosqD . ~8!

Thus on the one hand a nonvanishing transverse w
vectorq increases the MI domain~the short dashed line cor
responds to the case studied in@22#! but on the other hand
the maximum frequency does not depend onq.
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In Fig. 2 the MI gainP, Eq. ~6!, is sketched as a functio
of both the frequencyV and the transverse wave vectorQ of
the perturbation whereq5p/3 ~dash-dotted line in Fig. 1!.

~2! b51 ~anomalous dispersion! andp/2<q<p ~zero or
negative ‘‘diffraction’’!.

In this case the MI domain is located between the f
quenciesV l,uVu,Vu where

Vu52AU0
212 f ucosqusin2

Q

2

and

V l52sin
Q

2
A2 f ucosqu.

In contrast to the former case, the MI domain alwa
extends over the whole Brillouin zone. Furthermore, the
stability region is restricted with respect toV and for Q
Þ0 separated from the frequency of the stationary solu
~see Fig. 3!.

FIG. 1. The MI domain in theV-Q plane. Parameters
U05 f51, b51, andq5p/2—solid line,q55p/12—long dashed
line, q5p/3—dashed-dotted line,q50—short dashed line.

FIG. 2. The MI gainP as a function of the frequency and th
wave vector of the perturbation. Parameters:U05 f51, b51,
q5p/3.
-

s
-

n

~3! b521 ~normal dispersion! and 0<q,p/2 ~positive
‘‘diffraction’’ !. Here the boundaries of the MI domain a
given byV l,uVu,Vu where

Vu52sin
Q

2
A2 fcosq,

V l50 for 2fcosq<U0
2, and V l52A2 fcosqsin2(Q/2)2U0

2

for 2fcosq.U0
2 .

As in case~2!, the MI domain always extends over th
whole Brillouin zone. But in contrast to the previous cas
the instability region is separated from the frequency of
stationary solution only if 2fcosq.U0

2 and for uQu.Q0,
whereQ0 is determined by Eq.~8! ~see Fig. 4!.

III. MODULATIONAL INSTABILITY
OF ROTATING SOLITONS

Besides the cw solution Eq.~1! exhibits a temporarily
localized solution with a rotating phase as

un5gS t2 z

v Dei ~kz1qn2vt !, ~9!

FIG. 3. The MI domain~shaded area! in theV-Q plane. Param-
eters:U05 f51, b51, q5p. The dashed line indicates the max
mum gain.

FIG. 4. The MI domain~shaded area! in theV-Q plane. Param-
eters: U05 f51, b521, q50. The dashed line indicates th
maximum gain.
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55 7665INSTABILITY OF CONTINUOUS WAVES AND . . .
wherev2152bv is the deviation from the inverse grou
velocity andg obeys the equation

b

2
g92

l2

2
g1g350, ~10!

with l252k1bv224 fcosq.0.
In what follows we restrict ourselves tob51 ~anomalous

dispersion!. Then the solution to Eq. ~10! is
g5l sech @l(t2z/v)#. Thus Eq.~9! represents an array o
solitons with equal shape, but rotating phase. The rotatio
determined by the transverse wave vectorq. To perform the
linear stability analysis we make the substituti
g→g1a1 ib in Eq. ~9! and insert this perturbed solutio
into Eq. ~1!. By linearizing the equations obtained with r
spect toa andb and by performing the Fourier transform
tion of a andb with respect to the discrete variable we arri
at

aj12ia fsinqsinQ2L̂0 fb50,

bj12ib fsinqsinQ2L̂1 fa50. ~11!

Here we used the reference frame of the moving station
solutionsj5z, t5t2z/v, and the abbreviations

L̂0 f5L̂01h, L̂1 f5L̂11h, h54 fcosqsin2
Q

2
,

where L̂05l2/22 1
2 ]tt2g2, L̂15l2/22 1

2 ]tt23g2 are the
well-known Schro¨dinger type self-conjugated operators.
follows from Eq.~11! that the stability of the solution~9! can
be inferred from the eigenvalue problem

L̂0 f L̂1 fa5p2a or L̂1 f L̂0 fb5p2b, ~12!

wherep25(K12 fsinqsinQ)2. As for q50 @22# the eigen-
values can be found by solving the minimization problem

p25minH ^CuL̂1 f uC&

^CuL̂0 f
21uC&

J ~13!

and the solution~9! turns out to be likewise modulationall
unstable for

8

3
fcosqsin2

Q

2
,l2 ~14!

provided that cosq.0. However, this variational approac
does not provide information about the MI gain and fa
completely for cosq,0.

To overcome these difficulties we use the perturbat
theory near neutrally stable modes. This approach was
cessfully applied in continuous problems, viz., in the stabi
analysis of combustion waves@25#, the oscillation spectrum
of vortex filaments in liquid helium@26#, solitons in media
with weak dispersion@27#, and solitons in plasma physic
@4#. Here this approach can be used provided thath!l2.
This constraint can be met for two situations, namely,~i!
weak linear coupling between the guides in the ar
( f!l2) and arbitrary q and Q or ~ii ! strong coupling
is

ry

n
c-

y

( f'l2), but modulation with a small spatial frequencyQ
or/and an almost vanishing ‘‘diffraction’’
(dq5uq2p/2u,,1).

The idea of this approach was put forward in@25# and
consists in looking for particular modes in the spectrum p
vided by Eq.~12!, viz., those with the eigenvaluep50 for a
perturbation characterized byh50. These perturbations cor
respond to neutrally stable modes which describe infinite
mal variations of the parameters of the stationary soluti
Now, if h is small the eigenfunctions and eigenvalu
slightly differ from those of the neutrally stable modes.
our scenario the unperturbed solutions define an array
noninteracting identical Schro¨dinger solitons the phase o
which rotates where the period is given by 2p/q. The unper-
turbed problem~12! (h50) yields the neutrally stable mode
(p50) @4#:

a0
1522

]g

]l2 , a0
25

]g

]t
, b0

15g, b0
252tg, ~15!

where the6signs correspond to even and odd eigenfu
tions, respectively. Now making use of Eq.~15! as a zero
approximation the eigenfunctionsa6 andb6 as well as the
corresponding eigenvaluesp6 can be expanded in terms o
the small parameterh as

a65(
i50

ai
6 , ~p6!25(

i51
~pi

6!2. ~16!

Substituting Eq.~16! into Eq.~12! and taking into accoun
terms up to the second order inh we get for the eigenvalue

~p1!2522hl21
4

3S p2

3
11Dh2, ~17!

~p2!25
2

3
hl21

4

9S p2

3
21Dh2. ~18!

As follows from Eqs. ~17! and ~18!, either (p1)2 or
(p2)2 is less than zero and the respective quan
P652 ip6 represents the MI gain. For 0<q,p/2 MI
shows up for an even perturbation whereas forp/2,q<p
an odd perturbation leads to instability. These two types
MI may have different physical consequences, as we are
ing to show later.

Provided that the coupling is weak the MI gain in th
discrete system can be easily calculated for any wave ve
Q of the perturbation. As can be seen from Eqs.~17! and
~18!, the maximum gain is reached near the edge of the B
louin zone. If we omit second order terms in Eqs.~17! and
~18! we find thatP65Pm

6usin(Q/2)uwith

Pm
152lA2 fcosq ~19!

and

Pm
252lA2

3
f ucosqu ~20!
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as the maximum values atQm56p. If one takes into ac-
count second order terms in Eqs.~17! and ~18! uQmu de-
creases.

Finally, a remark is in order. Namely, in the continuo
medium soliton stability with respect to transverse pertur
tions can be investigated only within the long-waveleng
limit. In this case the MI gain grows withQ and reaches its
maximum for wave vectorsQ where the perturbation theor
must not be applied. Thus it is impossible to identify t
boundaries of the instability region as well as the maxim
MI gain by using the perturbation theory@4#.

Having identified the parameter space where MI exists
are now going to study the behavior of the unstable soli
array ~9! beyond the initial stage of exponential growth b
numerically solving the system~1!. For the numerical calcu
lations the split-step method using the fast-Fourier-transfo
algorithm ~see e.g.,@7#, and references therein! with up to
128 temporal grid points was applied. An array ofN516
channels with periodical boundary conditions was cons
ered. The perturbation applied contains even and odd tem
ral components, viz., a50.01cos(Qn)@g1coslt1g2sinlt#
whereg1,250 or 1. It turned out that the results practical
did not change if the perturbation was localized at the s
tons or not. As mentioned above, there are two differ
cases of MI which appear for cosq,0 and cosq.0. The
former instability provokes a bending of the initially hom
geneous soliton array, i.e., the soliton velocities are mo
lated across the waveguide array. This is displayed in F
5~a!–5~c! for a transverse wave vectorq5p, g15g251,
and for different wave vectorsQ of the perturbation for mod-
erate propagation distances. The changes in the velocity
approximately proportional tousinQ/2ucosQn, which is in
agreement with Eqs.~17! and~19!. The omission of the even
part of the perturbation (g150) does not change the result

A different kind of evolution can be observed fo
cosq.0 where the caseq50 is shown in Fig. 6. The even
part of the perturbation now causes an energy redistribu
between the waveguides as shown in Fig. 6~a!. The initially
homogeneous soliton array is modulated with the per
2p/Q as could be anticipated. This effect is known fro
plasma physics and is called there soliton bunching@4#.
Eventually it may lead to the formation of compressed pul
localized in a few waveguides@20–22#. But for moderate
distances and weak coupling (f50.1! the system behave
almost periodically, i.e., we observed some kind of rec
rence phenomenon between two spatial energy distribut
shown in Figs. 6~a! and 6~b! @where Fig. 6~b! displays the
most delocalized distribution#. In Figs. 7~a! and 7~b! the
same patterns are shown for the case ofq5p/4. We may
again identify a considerable energy localization in a f
channels@Fig. 7~a!# but with regard to the subsequent evol
tion an important difference to the previous case shows
After having attained a weakly localized state@Fig. 7~b!# the
system exhibits a recurrence to the energy distribution s
lar to that shown in Fig. 7~a!, but the whole pattern slightly
moves across the NOWA. For instance, the succeed
highly localized state appears forz513.5 but shifted by
n5 2 . Thus we can conclude that a nonvanishing transve
wave vectorqÞ0 ~with cosq.0) provokes a motion of the
pulses across the array. In conjunction with ‘‘bunching’’
evokes an energy switching between different channels.
-

e
n

m

-
o-

i-
t

-
s.

re

n

d

s

-
ns

p.

i-

g

se

For the particular situationq5p/2 ~‘‘diffractionless’’
case! the solitons propagated like almost noninteractin
fairly stable entities.

This critical dependence of the evolution of unstable
lutions on the transverse wave vectorq was previously iden-
tified for two- and three-core arrays by using a soliton p
turbation theory@28,29#. In particular, for q50 solitons
attract each other and form a bound state whereas
cosq,0 they repel. Moreover, for a three-core array a
q50 there is an energy flow from the outermost fibers to
central one. This flow is proportional to (f z)2 in the initial
stage of evolution and resembles the bunching effect@29#.

IV. CONCLUSIONS

In conclusion, we have studied the stability of movin
continuous waves and rotating solitons in a nonlinear wa
guide array against small modulations. For the cw case
domain as well as the gain of MI are analytically obtained

FIG. 5. Temporal field shape in the waveguide array after pro
gation distancez ~soliton bending!. Parameters:q5p, l252,
f50.1, and ~a! Q5p, z57; ~b! Q5p/2, z512; ~c! Q5p/4,
z516. n labels the waveguide number.
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55 7667INSTABILITY OF CONTINUOUS WAVES AND . . .
turned out that both quantities exhibit a strong depende
on the transverse wave vector of the stationary solution. T
dependence is not surprising because the transverse
vector determines physically the kind of ‘‘diffraction’’ tak
ing place in the array. The diffraction can attain either s
and can even be zero, which clearly underlines the pecul
ties of these discrete systems with regard to continuous o
The introduction of a nonzero transverse wave vector for
array of solitons corresponds to a rotation of the phase.
means of a perturbation theory near neutrally stable mo
the MI gain is calculated. Again there were different so
tions depending on the nature of diffraction. For the conv
tional, positive diffraction we obtained a soliton bunchin
where the amplitude modulation in the NOWA is determin
by the wave vector of the perturbation. This scenario c

FIG. 6. Temporal field shape in the waveguide array after pro
gation distance z ~soliton bunching!. Parameters: q50,
Q5p/2, l252, f50.1, ~a! z56.4, ~b! z58.3.
ys

in
ce
is
ave

n
ri-
es.
n
y
es
-
-

n

eventually lead to a strong compression and localizati
This corresponds to the collapse in the continuous mo
@21,22#. For negative diffraction the solitons in the array g
a velocity rather than an amplitude modulation~soliton bend-
ing!. Again the modulation period depends on the wave v
tor of the perturbation. The approach used here can be
plied to modified versions of the discrete NLSE, e.g., to
case of an arbitrary nonlinearityF(uUnu2) or linearly inho-
mogeneous arrays.
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