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Instability of continuous waves and rotating solitons in waveguide arrays

S. Darmanyad, I. Relke, and F. Lederér
Institut fir Festkapertheorie und Theoretische Optik, Friedrich-Schiller Universitana, Max-Wien Platz 1, D-07743 Jena, Germany
(Received 20 December 1996

The effect of a nonvanishing transverse wave vector on the stability of continuous waves and temporal
solitons which propagate in an array of nonlinear optical waveguides is studied both analytically and numeri-
cally. We derive analytical expressions for the domain of existence as well as the gain of modulational
instability of moving continuous waves. Because the transverse wave vector controls the “discrete diffraction”
the stability behavior critically depends on this quantity. By employing the perturbation theory near neutrally
stable modes it is shown that there are two different scenarios for the evolution of modulationally unstable
soliton arrays. The transverse wave vector of the unstable solution determines which kind of instability devel-
ops. Numerical calculations confirm the analytical res{iB4.063-651X%97)01606-1

PACS numbgs): 42.81.Qb, 03.65.Ge, 42.81.Dp

[. INTRODUCTION modulation in nonlinear optical waveguide arrgfdOWA)
has attracted a considerable amount of interest. The existence
Nonlinear evolution equations arise in many branches obf this type of localized solutions was predicted first for fo-
modern science. Stationary solutions to these equations camising Kerr nonlinearitiegl2]. As a consequence of the fact
frequently be found by using both analytical and numericalthat in NOWAs the “diffraction” can also be negativée-
methods. One of the fundamental problems left is to checlpending on the transverse wave vegtmight solitary waves
these solutions against their stability, which is essential fronwere also found in defocusing nonlinearit[@s]. These soli-
a basic point of view as well as for potential applications,tary waves describe either a strotig a few waveguidesor
see, e.g.[1-7], and the references therein. In particular, ina weak localizatior{minor changes from guide to guidef
nonlinear optics this question has attracted a considerabl&ae optical field in the array. The latter case leads to the
amount of interest during the past several years. Differentontinuous NLSE in the long-wavelength approximation
kinds of instability may lead to such phenomena as bistabilwhich exhibits genuine spatial soliton solutions. A detailed
ity, self-oscillation, and the formation of static or moving evaluation of various approaches toward an analytical de-
patterns. A prominent example is modulational instabilityscription of NOWAs(including also the intermediate case of
(MI), which is the prerequisite for the formation of spatial or localization) can be found if14], where propagation, steer-
temporal patterns. In an optical fiber where the field evoluding, localization, and collision effects of the solitary wave
tion is described by the nonlinear SchHimger equations solutions are investigated. Power controlled switching in
(NLSE) MI of a continuous wavécw) can be employed for NOWAs was numerically observed [15]. The possibility
the generation of pulse trains with a high repetition rateto control the propagation direction and the output channel
[8,9]. Moreover, it has been shown that recurrence phenomby an initial phase tilt was shown [16,17]. The influence of
ena and the existence of localized excitations in discrete syshe inhomogeneity of the coupling strength in a NOWA on
tems can be attributed to MI of stationary solutions of thesolitary wave formation and switching was studied in
respective nonlinear equatiof$0,11. It turned out that a [18,19.
particular feature of these systems consists in the critical de- Recently the existence and stability of solitary wave solu-
pendence of both the MI gaifinstability incrementand the  tions localized both temporarily and across the array were
domain of MI on the wave number of the stationary solution.considered if20—24. In particular, Ml of cw as well as
Recently it was pointed out that arrays of nonlineartemporal soliton solutions in NOWAs was studied [22]
waveguides represent an ideal laboratory for the study of thehere particular emphasis was paid to temporal compression
dynamical behavior of discrete systerfi2—24. Besides and spatial localization effects. However, the authors re-
this basic point of view these arrays may be envisaged astricted the study to the case where the transverse wave num-
potential all-optical devices such as, e.g., switches, or steeber vanishes. This means that the cw solution does not move
ing or logical elements. Moreover, if dispersion acts in theacross the array and the solitons have both the same shape
waveguides, arrays own the properties of both discrete anand phase in all waveguides. In view of what was said above,
continuous systems. Thus the study of their nonlinear behawhe transverse wave number of the stationary solutions may
ior is of fundamental interest as well. In particular, the studyrepresent an important control parameter with regard to both
of discrete solitary wave solutions which represent a balancthe Ml gain and domain. Therefore the aim of this paper is to
between couplindor “discrete diffraction”) and self-phase study Ml for plane waves moving across the array as well as
soliton solutions the phase of which rotates across the
NOWA. We will term the latter solutions rotating solitons.
*Permanent address: Institute of Spectroscopy, RAS TroitstMoreover, we will check our analytical results beyond the
142092, Moskow Region, Russia. onset of instability by numerical means in order to identify
Electronic address: pfl@uni-jena.de temporal and spatial patterns, which are eventually formed.
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The normalized slowly varying envelopes of the optical B .0

field in a fiber or channel waveguide array may be described F(2,0,Q =50 +4fcos:]sm2§. )

by the dimensionless linearly coupled nonlinear equations

[22] which can likewise be considered as mixed discrete- |t js evident that the stationary soluti@®) is modulation-

continuous nonlinear Schiinger equation¢DCNLSE ally unstable(exponential growth of the perturbatipii the
B right-hand side of Eq(4) is negative. Obviously, the gain of
19,Un+ 5 duUn+ F(Unsat U,_1)+|U,2U,=0, instability

Im [K]=P=F(2U5—F)>0 (6)

varies with the wave numbey of the stationary solution and
wherez is the propagation distance scaled by the dispersiotthe frequency) and wave numbe® of the perturbation, see
length Ld=TS/|D|(D is the group velocity dispersignand  Egs.(4) and (5). In contrast, the real part & additionally
t is the time in the reference frame of the pulse scaled by thdepends on the frequenay.
pulse lengthT,. The linear coupling parameter is defined as  The distinctive feature of discrete systems, viz., the de-
f=mL4/2L,>0 wherelL,, is the half beat length of a dual pendence of the gaiR on the wave number of the stationary
core coupler,3=1 or —1 stands for anomalou(<0) or  solution[10,11], can be clearly seen by inspecting Eg). It
normal O >0) group velocity dispersion, respectively. The follows from Eq.(6) that regardless of the sign of dispersion
normalized amplitudé is related to the slowly varying en- (8= *=1) Ml occurs for
velope of the optical fieldh by U= \/yL4A wherey is the
effective nonlinear coefficie7]. We note that Eq(1) holds
likewise in short arrays formed by film waveguides. There,

t represents a transverse coordinate scaled by the beam Wioftlﬂ_d ghe maximum - gainPmay= UC_” which appears for
Wo andLg=mwo2/\ is then the diffraction length. In what - Yo depends only on the amplitude of the stationary so-

n=12,... N 1)

0<F<2U2, (7)

follows we study the stability of two solutions to E¢L),  'Ution. N
viz., a moving plane wave and a rotating temporarily local- Some familiar limiting cases can be read off from Egs.
ized solution. (4)—(7) as Ml of (i) the nonlinear Schidinger equation6,7]

for fcogy=0 (diffractionless case (ii) the discrete nonlinear
Schralinger equation for8=0 (dispersionless casg10],
and (iii) the DCNLSE (1) for g=0 (zero transverse wave
vectop [22].

1. MODULATIONAL INSTABILITY
OF MOVING PLANE WAVES

The moving cw solution to Eg1) may be written as It is obvious that the existence criterion, the domain, and
_ the gain of MI are essentially determined B(€2,q,Q)
Un(z,t)=Uge (keran-et), (2)  which, in turn, critically depends on the sign of bghand

) . cog, see Eq.(5). For B=—1 (normal dispersion and
whe.re.q is the arbltrary transverse wave vector ayndhe w/2<q=< (zero and “negative” discrete diffractiorthere
deviation from the carrier frequency. The longitudinal waveijs no MI. In what follows we study the three cases where Ml

(1) B=1 (anomalous dispersi¢prand 0<q=< 7/2 (zero or
k=| U0|2Jr 2fcogy— sz positive “diffraction”).
> ©%

From Eg.(7) we can immediately derive the frequency

. . - . . rangeQ)_<Q<Q,,
We note that the linear version of this dispersion relation

indicates that the transverse coupling in the array may be ) .0

interpreted as discrete “diffraction.” Thus this diffraction Q. ==x2 U0—2fcosqsm2§,

resembles the continuous of@ositive diffractior) only for

0=<qg<m/2. Forq= /2 the diffraction disappears and gets \yhere MI appears. The respective domain of Ml is shown in

be anticipated that the transverse wave vector considerablyig. 1. As usual only the first Brillouin zone is displayed.

We perform the familiar linear stability analy<i6, 7] by 2fcom=<Uj (weak diffraction the whole Brillouin zone is
modulating the unperturbed amplitutly—Uo+Wq(z,t) I oquationally unstable anéi) if U2<2fcos (strong dif-

Eq. (2) where fraction) the region of Ml is situated betweehQ, with

I (t Z):Aei(Kz+Qn—Qt)+ B* e—i(K*z+Qn—Qt) (3)
o . Q —2arcsir( o (8
Inserting Eq.(2) into Eqg.(1) we get a dispersion relation for ° V2fcoq)’
the perturbations with the amplitudésandB: o
Thus on the one hand a nonvanishing transverse wave
(K+ BwQ + 2fsinQsing)?= F(F—2U3), (4)  vectorq increases the Ml domaifthe short dashed line cor-

responds to the case studied[R2]) but on the other hand
where the maximum frequency does not dependgon
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FIG. 3. The Ml domainshaded argan the )-Q plane. Param-
eters:U,=f=1, B=1, q= . The dashed line indicates the maxi-

FIG. 1. The MI domain in theQ-Q plane. Parameters; mMum gain.
Uo=f=1, B=1, andq= w/2—solid line,q=5m/12—Ilong dashed
line, g= w/3—dashed-dotted linej=0—short dashed line.

(3) B=—1 (normal dispersionand 0<q< /2 (positive
“diffraction” ). Here the boundaries of the Ml domain are

In Fig. 2 the MI gainP, Eq. (6), is sketched as a function given by Q,<|Q|<Q, where
of both the frequency) and the transverse wave vectrof
the perturbation wherg= 7/3 (dash-dotted line in Fig.)1 Q

(2) B=1 (anomalous dispersipmndr/2<q=< 7 (zero or 0= 25'”§V2f005q'
negative “diffraction”).

In this case the MI domain is located between the fre- 2 B - v
quencies, <| Q| <0, where 0,=0 for ngosqsu, and Q,=2/2fcogysird(Q/2)— U}

for 2fcox>U; .

3 As in case(2), the MI domain always extends over the

_ 2 Lo < whole Brillouin zone. But in contrast to the previous case,
Q,=2 \/U0+2f|cosq|sm2 2 the instability region is separated from the frequency of the
stationary solution only if 2cog>U3 and for |Q|>Q,,
whereQ, is determined by Eq8) (see Fig. 4.

and
Q lIl. MODULATIONAL INSTABILITY
Q|=25|n5\/2f|cosq|. OF ROTATING SOLITONS
Besides the cw solution Eql) exhibits a temporarily

In contrast to the former case, the MI domain alwayslocalized solution with a rotating phase as
extends over the whole Brillouin zone. Furthermore, the in-

stability region is restricted with respect @ and for Q _ Z\ i (kz+qn—ot)
#0 separated from the frequency of the stationary solution Un=9| t= v € ' ©)
(see Fig. 3.

FIG. 2. The MI gainP as a function of the frequency and the FIG. 4. The Ml domainshaded argan the )-Q plane. Param-

wave vector of the perturbation. Parametedgs=f=1, g=1, eters: Up=f=1, B=—1, gq=0. The dashed line indicates the
q= /3. maximum gain.
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wherev 1= —Bw is the deviation from the inverse group (f~A\?), but modulation with a small spatial frequency

velocity andg obeys the equation or/and an almost vanishing “diffraction”
(89=|q—m/2|<<1).
B, N\ 30 10 The idea of this approach was put forward[26] and
29729797 =0 10 consists in looking for particular modes in the spectrum pro-
vided by Eq.(12), viz., those with the eigenvalyge=0 for a
with \?=2k+ Bw?—4fcoy>0. perturbation characterized ly=0. These perturbations cor-

In what follows we restrict ourselves =1 (anomalous respond to neutrally stable modes which describe infinitesi-
dispersiop. Then the solution to Eq. (100 is  mal variations of the parameters of the stationary solution.
g=\ sech[\(t—2z/v)]. Thus Eq.9) represents an array of Now, if h is small the eigenfunctions and eigenvalues
solitons with equal shape, but rotating phase. The rotation islightly differ from those of the neutrally stable modes. In
determined by the transverse wave vecfoifo perform the our scenario the unperturbed solutions define an array of
linear stability analysis we make the substitution noninteracting identical Schdinger solitons the phase of
g—g+a+ib in Eq. (9) and insert this perturbed solution which rotates where the period is given by/2|. The unper-
into Eq. (1). By linearizing the equations obtained with re- turbed problen{12) (h=0) yields the neutrally stable modes
spect toa andb and by performing the Fourier transforma- (p=0) [4]:
tion of a andb with respect to the discrete variable we arrive
at d d

i ag:—za—)?z, agza—?, bg =g, bg=-tg, (15
ag+2iafsingsinQ—Lo:b=0,

where the*signs correspond to even and odd eigenfunc-
tions, respectively. Now making use of E@.5) as a zero
gpproximation the eigenfunctiorss™ andb™ as well as the
corresponding eigenvalugs- can be expanded in terms of
the small parametédr as

b+ 2ibfsingsinQ—L,;a=0. (12)

Here we used the reference frame of the moving stationar
solutionsé=z, r=t—z/v, and the abbreviations

A A - ,Q

Lo;=Lo+h, Ly=L;+h, h=4fcogsit—, ) )
2 a’=3 a’, (p9)?=3 (p) (16

where Lo=\?%/2—39..— g% L,=\?%2-1%9,.—3g? are the

well-known Schrdinger type self-conjugated operators. It  Substituting Eq(16) into Eq.(12) and taking into account

follows from Eq.(11) that the stability of the solutiof®) can  terms up to the second orderlinwe get for the eigenvalues

be inferred from the eigenvalue problem
2

A ) A 5 +12 W 2
LOlefa=p a or LlfLOfb:p b, (12) (p ) =—2hA +§ ?"I‘l h ’ (17)
where p?= (K +2fsingsinQ)?. As for =0 [22] the eigen-
values can be found by solving the minimization problem (p—>2:3m2+ 4 77_2_ 12 18)
N 3 9\ 3
o] (WL W)
pe=miny ——=——— (13 ) 2
<\If||_0f1|llf> As follows from Egs.(17) and (18), either (p™)“ or
(p7)? is less than zero and the respective quantity
and the solution(9) turns out to be likewise modulationally P~=—ip™ represents the Ml gain. For<0q<m/2 Ml
unstable for shows up for an even perturbation whereas #é2<q<r
an odd perturbation leads to instability. These two types of
8 L,Q MI may have different physical consequences, as we are go-
§fcosqsm2§<)\ (14 ing to show later.

Provided that the coupling is weak the MI gain in the
provided that cog>0. However, this variational approach discrete system can be easily calculated for any wave vector
does not provide information about the MI gain and failsQ of the perturbation. As can be seen from E(fs/) and
completely for cog<O0. (18), the maximum gain is reached near the edge of the Bril-

To overcome these difficulties we use the perturbatiorlouin zone. If we omit second order terms in E¢k7) and
theory near neutrally stable modes. This approach was su¢i8) we find thatP* =P, |sin(Q/2)|with
cessfully applied in continuous problems, viz., in the stability
analysis of combustion wav¢g5], the oscillation spectrum p+:2)\m (19)
of vortex filaments in liquid heliunj26], solitons in media m
with weak dispersiorf27], and solitons in plasma physics
[4]. Here this approach can be used provided that\2.
This constraint can be met for two situations, naméily,

weak linear coupling between the guides in the array -_ /E
(f<\?) and arbitraryq and Q or (ii) strong coupling Pm=2) 3f|cosq| (20

and
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as the maximum values &,,= = 7. If one takes into ac-
count second order terms in Eq47) and (18) |Q,, de- 20
creases.

Finally, a remark is in order. Namely, in the continuous
medium soliton stability with respect to transverse perturba-
tions can be investigated only within the long-wavelength
limit. In this case the MI gain grows witlp and reaches its
maximum for wave vector® where the perturbation theory AN
must not be applied. Thus it is impossible to identify the ‘ ‘
boundaries of the instability region as well as the maximum By e
MI gain by using the perturbation theop]. e ‘ T

Having identified the parameter space where MI exists we
are now going to study the behavior of the unstable soliton
array (9) beyond the initial stage of exponential growth by
numerically solving the systeifi). For the numerical calcu-
lations the split-step method using the fast-Fourier-transform ;. 1”
algorithm (see e.g.[7], and references thergimvith up to \
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128 temporal grid points was applied. An array & 16 <
channels with periodical boundary conditions was consid- Vet
: ( { -
ered. The perturbation applied contains even and odd tempo- e
eSS aia
. _ . < ke
ral components, viz.,a=0.01cosQn)[ y;CoS\t+ y,Sinkt] SN

wherey; ,=0 or 1. It turned out that the results practically
did not change if the perturbation was localized at the soli-
tons or not. As mentioned above, there are two different
cases of Ml which appear for cgs0 and cog>0. The

part of the perturbationy;=0) does not change the results.
A different kind of evolution can be observed for
cog>0 where the casg=0 is shown in Fig. 6. The even
part of the perturbation now causes an energy redistribution
between the waveguides as shown in Fi@g)6The initially
homogeneous soliton array is modulated with the periorf
27/Q as could be anticipated. This effect is known from
plasma physics and is called there soliton bunchidg
Eventually it may lead to the formation of compressed pulses _ . - _ .,
localized in a few waveguideg20—27. But for moderate For the particular situatiorg= /2 (“diffractionless”
distances and weak coupling€0.1) the system behaves case the sollto.n_s propagated like almost noninteracting,
almost periodically, i.e., we observed some kind of recur-fairly stable entities. _
rence phenomenon between two spatial energy distributions |1 NiS critical dependence of the evolution of unstable so-
shown in Figs. &) and &b) [where Fig. 6b) displays the |l..I.tI0nS on the transverse wave vectpwas preV|oust_|den—
most delocalized distributidn In Figs. %a) and Tb) the tified for two- and three-core arrays by using a soh_ton per-
same patterns are shown for the caseqefm/4. We may turbation theory[28,29. In particular, forg=0 solitons
again identify a considerable energy localization in a few@itract each other and form a bound state whereas for
channeldFig. 7(a)] but with regard to the subsequent evolu- c0S1<<0 they repel. Moreover, for a three-core array and
tion an important difference to the previous case shows ugl=0 there is an energy flow from the outermost fibers to the
After having attained a weakly localized stéfég. 7(b)] the central one. Thls flow is proportional td %) in the initial
system exhibits a recurrence to the energy distribution simiStage of evolution and resembles the bunching eff2}
lar to that shown in Fig. (&), but the whole pattern slightly
moves across the NOWA. For instance, the succeeding
highly localized state appears fa=13.5 but shifted by
n= 2. Thus we can conclude that a nonvanishing transverse In conclusion, we have studied the stability of moving
wave vectorg# 0 (with cog>0) provokes a motion of the continuous waves and rotating solitons in a nonlinear wave-
pulses across the array. In conjunction with “bunching” it guide array against small modulations. For the cw case the
evokes an energy switching between different channels. domain as well as the gain of MI are analytically obtained. It

former instability provokes a bending of the initially homo- 20 ©

geneous soliton array, i.e., the soliton velocities are modu- l

lated across the waveguide array. This is displayed in Figs. u.f 1° ‘

5(a)-5(c) for a transverse wave vecta=1m, y;=7y,=1, e

and for different wave vectoi® of the perturbation for mod- ~—

erate propagation distances. The changes in the velocity are “‘l - - -

approximately proportional tdsinQ/2|cosQn, which is in ehg N

agreement with Eq$17) and(19). The omission of the even <o \i&ii\
> e

FIG. 5. Temporal field shape in the waveguide array after propa-
ation distancez (soliton bending Parametersg=m, \?=2,
=0.1, and(@ Q=m, z=7; (b) Q==/2, z=12; (c) Q=/4,
z=16. n labels the waveguide number.

IV. CONCLUSIONS
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